Операции наращения и дисконтирования. Логика операций дисконтирования, наращения капитала

Содержание
  1. Понятие наращения и дисконтирования
  2. Метод наращивания капитала
  3. Метод дисконтирования капитала
  4. Дисконтирование – что это простыми словами
  5. Дисконтирование повседневными словами
  6. Формула дисконтирования
  7. Формула жизни: время + деньги
  8. Операции дисконтирования и наращения
  9. Способ дисконтирования денежных потоков (ДДП)
  10. Коэффициент
  11. Формула расчета ДДП
  12. Дисконтирование и инвестиционные проекты
  13. Операции наращения и дисконтирования. Финансовые операции в рыночной экономике
  14. Специфика
  15. Логика операций дисконтирования (наращения) капитала
  16. Особенности начисления
  17. Длительность периода
  18. Используемые варианты
  19. Сокращение
  20. Особенности векселя
  21. Другие варианты
  22. Начисление процентов при увеличении средств
  23. Номинальный и эффективный показатель
  24. Банковский учет
  25. МСФО, Дипифр
  26. Понятие и формула дисконтирования доступным языком
  27. Дисконтирование
  28. Наращение
  29. Приведенная стоимость – это дисконтированная стоимость?
  30. Дисконтирование– это определение текущей стоимости будущих денежных потоков
  31. Таблица дисконтирования

Понятие наращения и дисконтирования

Операции наращения и дисконтирования. Логика операций дисконтирования, наращения капитала

Операции наращения и дисконтирования являются основами финансовой математики.

Они применяются как в бизнесе, так и в обычной жизни, например, при оформлении депозитного вклада или потребительского кредита.

Используя эти показатели, можно рассчитывать стоимость будущих денег на данный момент или сегодняшних средств в будущем. Такие операции являются основой финансового анализа инвестиционных инициатив.

Большинство из нас сталкивалось с понятием банковского процента при размещении денег на депозитном счету и просчитывало, какой пассивный доход удастся получить, благодаря удачному вложению. Дисконтированием в быту пользуются гораздо реже, его основная сфера применения – бизнес. Операции наращивания и дисконтирования, по сути, схожи между собой, но имеют разную направленность во времени:

  • наращение направлено в будущее и показывает цену сегодняшним деньгам через определенное время;
  • дисконтирование имеет обратный вектор и характеризует цену ожидаемых прибылей по состоянию на сегодняшний день с учетом дисконта.

Основным элементом, отражающим временной фактор, выступает процентная ставка. Ее можно понимать как цену за использование денег, взятых взаймы.

Ставка в финансовом менеджменте применяется как норма доходности проводимых операций. Она исчисляется в процентах или долях единицы в результате деления полученного дохода на объем инвестированных средств.

Проценты бывают двух видов:

  • Декурсивные (обычные). Они выплачиваются в конце установленного договором периода. Применяются при страховании, а также оформлении депозитов и кредитов.
  • Антисипативные (авансовые). Они начисляются на начальной стадии установленного временного отрезка относительно количества денег, которое ожидается в конце (с учетом процентов), и выплачиваются получателем сразу при оформлении кредита. Используются в расчетах с иностранными контрагентами, а также при работе с ценными бумагами дисконтированными.

Рыночная экономика дает возможность частным инвесторам, инвестиционным компаниям или предприятиям разместить свободные деньги на условиях возвратности, платности и срочности, преследуя такие цели:

  • гарантирование сохранности своих финансовых ресурсов от обесценивания, вызванного инфляционными процессами;
  • получение дополнительного дохода (курсового, дисконтного или процентного).

Если известны начальная и конечная сумма, а также период вложения, то по формулам можно рассчитать значения дисконтной и процентной ставок. Например, известно, что предприниматель взял трехлетний кредит на 300 тысяч рублей, а в конце должен возвратить банку 400 тысяч рублей:

r = (FV – PV) / PV * n = (400 – 300) / 300 * 3 = 100 / 900 = 0,11, то есть 11%.

d = (FV – PV) / FV * n = (400 – 300) / 400 * 3 = 100 / 1200 = 0,08, то есть 8%.

Всегда существуют предприниматели или компании, которые нуждаются в деньгах для развития своего бизнеса, они готовы платить за предоставленную им ссуду.

С другой стороны, имеются учреждения или организации, готовые за плату предоставить необходимый ресурс. Важно только понимать, на какое время, и на каких условиях можно брать деньги в долг, чтобы остаться в выигрыше.

Именно для прогнозирования процессов такого роды и применяются методы наращения и дисконтирования.

Метод наращивания капитала

Наращивание (компаундирование) представляет собой увеличение начальной суммы (PV, Present Value) капитала за счет прибавления к ней через определенное время процентов как следствие какой-то финансовой операции. После этого можно увидеть итоговую сумму (FV, Future Value).

Определяют две разновидности процентов:

  • Простые, когда начисление вознаграждения производится один раз в конце срока вклада. Обычно они применяются в краткосрочных операциях (длительностью до одного года), по окончании срока которых нужно снимать всю сумму вместе с пассивным доходом, а при необходимости снова вкладывать ее и оформлять все заново.
  • Сложные, когда при расчете выгоды от каждого временного отрезка, учитываются уже начисленные на начальную сумму проценты за предыдущий временной отрезок. Такая методика характерна для долгосрочных вкладов.

Формула простых процентов имеет такой вид:

FV = PV * (1 + r*n)

где:

  • r – процентная ставка;
  • n – количество периодов времени.

Просчитаем наращение по простым процентам при вкладе 20 тысяч рублей сроком на 1 год по ставке 7% годовых:

FV = 20000 * (1 + 0,07 * 1) = 21400

Таким образом, сумма начисленных процентов за год составит 1400 рублей. Если на тех же условиях положить деньги на 3 года, то получим такой результат:

FV = 20000 * (1 + 0,07 * 3) = 24200 рублей.

Теперь рассмотрим вариант, при котором те же деньги вкладывают на 3 года под аналогичный процент с начислением вознаграждения ежегодно. Здесь можно применить формулу сложных процентов:

FVn = PV (1 + r)n

Для начала необходимо рассчитать ожидаемое наращение вклада к концу первого года, а после этого и оставшихся двух лет:

FV1 = FV1 + FV1 * r =PV (1 + r) = 20000 (1 + 0,07) = 21400;

FV2 = FV2 + FV2 * r = PV (1 + r)2 = 20000 (1 + 0,07)2 = 22898;

FV3 = FV3 + FV3 * r = PV (1 + r)3 = 20000 (1 + 0,07)3 = 24500

Из наших вычислений можно увидеть, что наращение с применением сложных процентов за 3 года составит 4501 рубль. Вспомним, что если бы речь шла о простых процентах, то вкладчик получил бы несколько меньшую сумму. Разница составляет 300 рублей (24500 – 24200). На первый взгляд, это совсем немного, однако когда речь идет о крупных вкладах это различие становится существенным.

Если же по условиям договора начисление процентов производится чаще, чем раз в году (ежеквартально или ежемесячно), то наращивание первоначальной суммы идет более высокими темпами. Чем чаще период начисления, тем быстрее растет вложенный капитал.

Метод дисконтирования капитала

Понятие дисконтирования является важнейшим элементом оценки и анализа денежных потоков, возникающих в результате инвестирования финансов в любые начинания. Использование дисконтирования при совершении сделок и заключении договоров дает возможность собственникам избежать убытков и заработать на своих вложениях.

Дисконтирование – это механизм приведения будущей стоимости средств к состоянию на момент расчета. Он дает возможность, зная размер конечной суммы FV, найти величину суммы PV, которую следует вложить. Примерами дисконтирования могут служить такие случаи:

  • При оформлении депозита клиент хочет знать, сколько ему необходимо денег положить на счет, чтобы через 3 года у него было 400 тысяч рублей.
  • При получении ссуды клиент сразу должен выплатить проценты за ее использование, такая сделка носит название учет, а проценты в таком случае называют дисконтом.
  • При покупке векселя раньше наступления времени его оплаты (учет векселя). В этом случае банк выплачивает держателю сумму, которая меньше номинала, а разница между номиналом и реально полученной суммой называется дисконтом.

Поскольку дисконтирование и наращение, по сути, являются зеркальным отражением друг друга, то формула дисконтирования легко находится путем преобразования формулы наращивания:

PV = FV * 1/(1 + r)n

Ставка дисконтирования (d) и процентная ставка (r) взаимосвязаны между собой соотношениями, которые можно выразить таким образом:

d = r * (PV / FV) – определяется относительно начальной суммы

r = d * (FV / PV) – определяется относительно наращенного денежного показателя.

Решим несложную задачу. Человек желает купить новую модель автомобиля, которая выйдет на рынок через 3 года.

Заявленная производителем ориентировочная стоимость автомобиля составляет 22 тысячи долларов.

Необходимо найти, сколько денег требуется положить на депозит сейчас при ставке 7% годовых, чтобы через три года выйти на искомый показатель. Подставляем исходные данные в формулу дисконтирования:

PV = 22000 * 1 / (1 + 0,07)3 = 22000 * 1 / 1,225 = 22000 * 0,8163 = 17959

Для выхода на показатель 22000 долларов, сегодня под 7% годовых следует вложить 17959 долларов.

В нашем случае все достаточно очевидно, поскольку размер процентной ставки известен заранее. Гораздо сложнее определить значение этого критерия в случае оценки инвестиционного предложения.

В этом случае ставка определяется различными методами, в которых используются такие показатели, как средний банковский процент, величина активов компании, размер и рентабельность капитала, размер дивидендов по ценным бумагам, потенциальные риски.

Кроме того, учитывается темп инфляции и общеэкономические ожидания.

Отзывы, комментарии и обсуждения

Источник: https://finswin.com/projects/ekonomika/diskontirovanie-i-narashchenie.html

Дисконтирование – что это простыми словами

Операции наращения и дисконтирования. Логика операций дисконтирования, наращения капитала

В английском языке слово discounting определяется как сведение экономических значений за различные промежутки времени к заданному отрезку.

Однако, если вы не имеете профильного образования, это определение может вас только запутать. Но все мы с вами сталкиваемся с ситуацией дисконтирования, даже не подозревая об этом.

Дисконтирование повседневными словами

Каждый россиянин знает цену своим деньгам. Стоя на кассе еще раз пересмотрите весь товар, убрав то, без чего можно обойтись.

Также под термином дисконтирование понимают экономический коэффициент, определяющий потребительскую способность денег. При помощи дисконтирования можно определить сумму, с которой нужно расстаться сегодня, для получения прибыли завтра.

Такой инструмент прогнозирования дохода востребован в бизнесе для расчета дохода от инвестиций

Дисконтирование применимо и в повседневной жизни тех людей, кто не связан с бизнесом инвестиций.

К примеру, желая дать своему ребенку обучение, приходится идти на большие траты. К дате поступления может не быть финансового резерва, тогда мы задумаемся об отложенном резерве денег, хранящемся «на черный день».

Рассмотрим на примере:

Через четыре года ваш сын будет оканчивать школу и в дальнейшем поступать в колледж, где курсы подготовки обойдутся в 25 000 рублей. Вы не можете взять эту сумму из семейного вклада.

Один из вариантов – открытие счета в банке. Для открытия накопительного счета сначала необходимо рассчитать сумму, которую нужно положить в банк, для получения через четыре года 25000 рублей.

Допустим, банк дает нам 10% годовых по вкладу. Чтобы выяснить, какую сумму нам нужно потратить (положить на счет) сегодня, производим нехитрые расчеты: 25 000 рублей разделим на (1,10) в квадрате и получаем 20 661 рубль. Эти вычисления будут дисконтированием.

В вышеизложенном примере с вкладом, ставка дисконтирования получатся 10%, Желаемая сумма (25 000 рублей) – это платеж через 4 года, а финальная сумма (20 661 рубль)  – это и будет нужная нам дисконтированная стоимость предполагаемого финансового денежного.

Формула дисконтирования

Для того чтобы рассчитать стоимость дисконтирования, везде используются одинаковые формулы и обозначения данных показателей. FV (future value) и  PV (present value).

Следуя нашему примеру, желаемая финальная сумма в размере 25 0000 рублей – это FV, стоимость денег в перспективе, а 20 661 рублей – это PV, стоимость денег на настоящий временной период.

Полностью формула имеет вид: PV = FV * 1/(1+R) n (25 000 * 1/(1+R) n = 20 661)

1/(1+R) n – фактор дисконтирования

R – процентная ставка

N – количество времени (лет) до желаемой даты.

Иначе говоря, дисконтирование можно определить как путь финансового потока от того, какую сумму мы планируем иметь спустя четыре года, к той, расстаться с которой нам необходимо, для достижения поставленной цели.

Формула жизни: время + деньги

Можно еще обратиться к примеру, знакомому практически каждому человеку. У нас есть немного свободных денег, которые мы можем потратить. Но, чтобы приумножить финансы, мы отправляемся в банк, чтобы открыть там счет под проценты.

Если вы положите 20 000 руб. под 10% годовых, то спустя календарный год, на счету вас будет уже 22 000 рублей.

На формуле это считается: 20000*(1+10%).

Расчет по увеличению (наращиванию) счета, возьмем за три года, будет уже несколько другим: (20000*1,10)*1,10)*1,10= 26 620

И имеет вид:

(1+R) N, где

R –процентная ставка в десятичных,

N — расчетный период.

Операции дисконтирования и наращения

Наращивание – это вероятные расчеты стоимости финансов, которые возможно будет получить спустя какое-то время.

Легче всего суть данного процесса можно понять, вспомнив популярное выражение Время – деньги. Говоря простым языком, чем дольше открыт ваш вклад, тем большую сумму вы можете получить на выходе, спустя какой-то промежуток времени.

Способ дисконтирования денежных потоков (ДДП)

Без дисконтирования невозможно прогнозировать эффективность проекта и будущую прибыль с него.

Методы дисконтирования учитывают регулярность дохода, прибыльность и риски.

Коэффициент

Финансы имеют закон, носящий название падающая стоимость. Иначе говоря, деньги теряют свою покупательскую способность по истечению какого-то времени, то есть, дешевеют. Эта особенность – основа метода дисконтирования.

Следовательно, что для произведения верных расчетов нужно учитывать оценку на настоящий период времени, и продолжать все денежные движения в будущем соотносить с сегодняшним днем.

Формула расчета по приведению потенциальной прибыли к текущей стоимости выглядит так:

где: r – ставка, а i – временной период.

Формула расчета ДДП

С помощью ставки дисконтирования можно вычислить прибыль, на которую может рассчитывать инвестор, при вкладах в определенные проекты.

В зависимости от объекта инвестирования, ставка дисконтирования обязательно состоит из инфляционной составной части, финансовой оценки вложенного бюджета, уровня дохода и рисков, также частей других составляющих.

Очевидно, что инвестировать в проект больше, чем планируется получить с него, никто не будет. Так же как и продавать бизнес за меньшую сумму, чем прогнозируется получить с него через пару лет.

Дисконтирование и инвестиционные проекты

Это означает, что вкладчик, инвестирующий финансовые средства в идею, получает не инженерные или человеческие запасы в виде группы первоклассных экспертов, новых офисов, баз, хай-текового оснащения и т.п., а завтрашний приток финансов. Если мы будем и дальше развивать эту тему, то выходит, различное дело «производит на рынок только один продукт – деньги.

Основное достоинство способа дисконтирования финансовых средств заключается в том, что этот способ анализа, только один из всех нынешних, нацелен на перспективы рынка, это помогает развитию инвестирования.

Источник: https://fin-atlas.ru/diskontirovanie-chto-eto-prostymi-slovami/

Операции наращения и дисконтирования. Финансовые операции в рыночной экономике

Операции наращения и дисконтирования. Логика операций дисконтирования, наращения капитала

Под процентными средствами следует понимать абсолютный размер прибыли, полученной в результате предоставления денег. Они могут передаваться в любой форме. Это могут быть различные финансовые сделки.

К примеру, осуществляется выдача ссуды, помещение средств на депозитный счет, продажа изделий в кредит, приобретение сберегательного сертификата, облигации, учет векселя и так далее.

Особое значение при этом имеет связь между ставкой наращения и ставкой дисконтирования. Рассмотрим эти элементы подробнее.

Специфика

Процентная ставка представляет собой относительную сумму прибыли, полученной за определенный (фиксированный) временной отрезок. Она формируется отношением дохода к размеру задолженности. Измерение ее осуществляется в обыкновенной либо десятичной дроби или же в процентах.

Проводя анализ финансовых операций, специалисты используют эту относительную сумму как показатель степени эффективности (доходности) любой коммерческо-хозяйственной, инвестиционной, кредитной деятельности.

При этом не будет иметь значения, был ли факт инвестирования средств и процесс увеличения их объема, или он не состоялся. Временной промежуток, к которому приурочена ставка процента, именуется периодом начисления.

Им может являться год, квартал, полугодие, месяц и даже день в некоторых случаях. Как правило, на практике используются годовые суммы.

Логика операций дисконтирования (наращения) капитала

По договоренности между заемщиком и кредитором, выплата процентов осуществляется по мере их начисления, либо они включаются в основную сумму задолженности. Увеличение объема средств во времени вследствие присоединения – это наращение капитала. Его именуют еще ростом суммы. Ставка дисконтирования – величина, обратная ставке наращения.

Это обусловливается тем, что при сокращении сумма, которая относится к предстоящему периоду, уменьшается на показатель соответствующей скидки. В таких случаях говорят, что применяются учетные (дисконтированные) ставки. Проценты, полученные по ним, именуют антисипативными, а те, которые возникли по сумме увеличения, называют декурсивными.

Такова логика операций дисконтирования (наращения) капитала.

Особенности начисления

В большинстве случаев декурсивные проценты именуют просто процентами. Для их начисления используется постоянная база. Когда в качестве нее принимается сумма, которая была получена на предыдущем этапе сокращения либо увеличения, применяются сложные проценты. Наращение и дисконтирование в таких случаях проходит по определенным схемам.

Относительные суммы могут являться фиксированными. В этом случае в договоре определяются их размеры. Также они могут быть и плавающими. В этом случае в договоре указывается не ставка, а база, изменяющаяся во временном промежутке, а также сумма надбавки – маржи. Размер последней определяется сроком кредита, платежеспособностью заемщика и прочими условиями.

В течение всего периода ссудной операции она может являться переменной либо постоянной. В случае последовательного погашения долга допускается два варианта начисления процентов. В первом случае ставка процента (сложная либо простая) применяется к фактически существующей сумме задолженности. Второй вариант используется при потребительском кредитовании.

В этом случае начисление осуществляется на всю сумму обязательства без учета его последовательного погашения. На практике используются дискретные суммы. Они начисляются за определенные временные промежутки (полугодие, год и пр.). Операции наращения и дисконтирования могут проводиться непрерывно, в течение бесконечно малых периодов.

В этом случае применяют и соответствующие проценты (непрерывные).

Под увеличенной суммой долга (ссуды, депозита, прочих займов или инвестированных средств) следует понимать первоначальный объем денег с процентами к концу периода начисления. Таким образом, можно обозначить:

  • проценты за весь срок – I;
  • первоначальная сумма задолженности – Р;
  • увеличенный объем средств (в конце периода) – S;
  • процентная ставка – i;
  • время ссуды – n.

За весь период проценты будут составлять:

I = Pni.

Наращение суммы определяется сложением первоначальных средств и процентов:

P + I = P + Pni = P (1+ ni) = S.

На практике специалистам часто приходится сталкиваться с противоположной задачей. По сумме S, которая подлежит уплате через какой-то временной промежуток n, нужно определить размер ссуды, которая была получена – Р. В таких случаях имеет место дисконтирование.

Расчет осуществляется тогда, когда проценты с суммы S будут удерживаться вперед, непосредственно при выдаче займа. Процесс начисления процентов и их списание именуют учетом. Сами же проценты называют дисконтом либо скидкой. Для вычисления нужно воспользоваться равенством S = P (1 + ni).

Получится Р = S / (1 + ni). Таким образом, Р будет являться современным размером S, выплаченным спустя n лет. Приведенные вычисления показывают простые виды дисконтирования (наращения). В последнем случае рассмотрен вариант математического определения суммы.

Как видно, при вычислениях используются показатели, которые применяются и в операции наращения, и дисконтирования.

Длительность периода

Операции наращения и дисконтирования могут вычисляться по двум временным базам. Если К будет 360 дней, то получаются коммерческие или обыкновенные проценты. При применении реальной продолжительности календарного года в 365 или 366 дней начисляют точные проценты.

Количество дней ссуды берется точно и приближенно. В последнем случае в месяце будет 30 дней. Точное количество дней можно определить посредством вычисления их числа между датами, когда был выдан заем, и когда он должен быть погашен. По ст. 839, п.

1 ГК, дни, в которые был открыт и закрыт вклад, не включаются в общий срок для начисления.

Используемые варианты

На практике применяются три способа начисления процентов:

  1. Точные суммы с конкретным количеством дней. При этом используются обозначения АСТ/АСТ либо 365/365. Такой вариант используется центральными и крупными коммерческими банковскими институтами в США и Великобритании. Этот способ вычисления позволяет получить самые точные суммы.
  2. Обычные проценты с точным количеством дней займа. В этом случае используются обозначения АСТ/360 или 365/360. Данный метод иногда именуют банковским. Его применяют при операциях между банками разных стран или одного государства. Такой метод, в частности, распространен в Швейцарии, Бельгии, Франции. При данном вычислении получается несколько большая сумма, чем при применении точных процентов.
  3. Обычные проценты с примерным количеством дней (360/360). Этот метод практикуется в коммерческих банках Дании, Германии, Швеции. Такой вариант используется в случаях, когда точный результат не нужен (к примеру, при промежуточных вычислениях).

В процессе инвестирования средств в краткосрочный депозит в некоторых случаях применяют неоднократное последовательное повторение наращения по простому проценту в рамках общего заданного периода. Таким образом выполняется реинвестирование сумм, полученных на каждой стадии увеличения объема средств при помощи переменной или постоянной базы.

Сокращение

Дисконтирование может рассматриваться в качестве определения любого стоимостного показателя, относящегося к предстоящему времени, на более ранний период.

Такой метод именуется приведением величины к некоторому, как правило начальному, моменту. Сумму Р, полученную при помощи сокращения, называют текущей стоимостью либо современным размером будущего платежа.

В зависимости от используемого вида ставки процента используется два варианта дисконтирования:

  1. Математический метод.
  2. Коммерческий (банковский) учет.

В первом варианте, рассмотренном выше, полученная дробь именуется дисконтирующим множителем. Он отражает долю, которую составляет первоначальный размер задолженности в конечной сумме.

При использовании метода коммерческого учета финансовый институт до наступления срока выплаты по векселю либо другому платежному обязательству покупает его у владельца по стоимости, меньшей, чем указана в бумаге. Таким образом, приобретение осуществляется с учетом скидки.

При наступлении срока платежа банк, получив деньги, реализует процентную прибыль в форме дисконта. Владелец бумаги с помощью учета обладает возможностью получить средства раньше указанного в ней срока.

Особенности векселя

Эта ценная бумага представлена в виде долговой расписки. Вексель оформляется в соответствии с законодательными требованиями.

Нормы предусматривают специальные бланки, в которых присутствуют наименование, срок платежа, место, где он должен быть произведен, сведения о субъекте, которому предназначается оплата, информация о дате и месте составления бумаги, подпись векселедателя.

Такие долговые расписки могут быть переводными и простыми. Последние представлены в виде документов, которые удостоверяют безусловное финансовое обязательство векселедателя выплатить определенную сумму владельцу бумаги по наступлению срока погашения обязательства.

Переводным называют документ, который выписывает заемщик. Тратта – это форма особого приказа непосредственному плательщику (банковской организации, как правило) о выплате в установленный срок векселедержателю (третьему лицу) определенной суммы.

Для таких ценных бумаг используется коммерческий (банковский) метод. В соответствии с ним проценты за использование ссуды в форме дисконта будут начисляться на сумму, которая должна быть выплачена в конце периода. Учетным показателем в этом случае выступает d. Размер суммы будет равен Snd. N будет измеряться в годах, если d – годовая ставка. Вычисления будут следующими:

Р = S – Snd = S (1 – nd),

где n – период с момента учета до дня погашения обязательства;

(1 – nd) – дисконтный множитель.

Учет, как правило, выполняется при временной базе К, равной 360 дням, количество дней займа чаще всего берется точное.

Другие варианты

Операции наращения и дисконтирования вычисляются не только по простым процентам. К примеру, суммы не выплачиваются сразу после начисления, а включаются в сумму задолженности. Такое присоединение именуют капитализацией процентов. При вычислении можно применить те же показатели, что использовались выше.

По окончании первого года проценты равны Pi. Наращенная сумма при этом будет Р + Pi = Р (1 + i). К завершению второго года она станет Р (1 + i) + Р (1 + i) i = Р (1 + i) 2 и так далее. По окончании года n сумма будет S = Р (1 + i) n, а проценты за этот период I = S – P = Р [(1 + i) n – 1].

(1 + i) n – множитель наращения по сложным процентам. Время в таких случаях измеряют как АСТ/АСТ. Зачастую срок для начисления процентов не целое число.

Начисление процентов при увеличении средств

Существуют следующие варианты начисления при наращении:

  1. Вычисление осуществляется с использованием целого числа лет. Оно берется из формулы сложных процентов. Из соотношения простых процентов берут дробную часть периода.
  2. По правилам некоторых коммерческих банков для ряда операций процентная сумма начисляется только за целые числа периодов (лет или иных сроков).

Для сопоставления результатов увеличения по различным процентным показателям достаточно будет провести сравнение соответствующих множителей. При равных уровнях ставок процентов соотношения этих показателей будут существенно зависеть от периода.

При n>1 с удлинением срока различие будет увеличиваться. Работая со сложными процентами, используют правило 72: если процентная ставка есть i, то удвоение суммы происходит приблизительно за 72/i лет. К примеру, при 12 % это случится спустя 6 лет.

Номинальный и эффективный показатель

В условиях современности капитализация процентов осуществляется, как правило, не единожды, а несколько раз в течение года. Это может осуществляться поквартально либо по полугодиям. В некоторых зарубежных коммерческих банковских структурах практикуется и ежедневное начисление.

Если взять за годовую ставку j, количество периодов в году – m, каждый раз определение процентов будет осуществляться по j/m. Ставка j именуется номинальной. Существует также действительный (эффективный) показатель. Он представляет собой годовую ставку сложных процентов.

С ее использованием получают тот же результат, что и при применении m – единовременное начисление процентов по j/m. Эта ставка измеряет тот относительный реальный доход, который получается в целом за год.

Банковский учет

При вычислении по коммерческому методу используется сложная ставка. В таких случаях процесс сокращения суммы проходит с определенным замедлением.

Это обусловливается тем, что каждый раз учетную ставку применяют не к первоначальному объему средств. Она используется для суммы, дисконтированной на предыдущем этапе во временном промежутке.

Эффективный учетный показатель характеризует степень сокращения за год. Эта ставка во всех случаях при m>1 будет меньше, чем номинальная.

Источник: https://FB.ru/article/219668/operatsii-narascheniya-i-diskontirovaniya-finansovyie-operatsii-v-ryinochnoy-ekonomike

МСФО, Дипифр

Операции наращения и дисконтирования. Логика операций дисконтирования, наращения капитала

Знаете ли вы, что означает дисконтирование? Если вы читаете эту статью, значит, вы уже слышали это слово. И если вы пока не поняли до конца, что это такое, то эта статья для вас. Даже если вы не собираетесь сдавать экзамен Дипифр, а просто хотите разобраться в этом вопросе, прочитав эту статью, вы сможете прояснить для себя понятие дисконтирования.

Данная статья доступным языком рассказывает о том, что такое дисконтирование. На простых примерах в ней показана техника расчета дисконтированной стоимости. Вы узнаете, что такое фактор дисконтирования и научитесь пользоваться таблицами коэффициентов дисконтирования.

Понятие и формула дисконтирования доступным языком

Чтобы проще было объяснить понятие дисконтирования, начнём с другого конца. А точнее, возьмем пример из жизни, знакомый каждому.

Пример 1. Представьте, что вы пришли в банк и решили сделать вклад в размере 1000 долларов.

Ваши 1000 долларов, положенные в банк сегодня, при банковской ставке 10% будут стоить 1100 долларов завтра: нынешние 1000 долларов + проценты по вкладу 100 (=1000*10%). Итого через год вы сможете снять 1100 долларов.

Если выразить этот результат через простую математическую формулу, то получим: $1000*(1+10%) или $1000*(1,10) = $1100.

Через два года нынешние 1000 долларов превратятся в $1210 ($1000 плюс проценты за первый год $100 плюс проценты за второй год $110=1100*10%). Общая формула приращения вклада за два года: (1000*1,10)*1,10 = 1210

С течением времени величина вклада будет расти и дальше. Чтобы узнать, какая сумма вам причитается от банка через год, два и т.д., надо сумму вклада умножить на множитель: (1+R)n

  • где R – ставка процента, выраженная в долях от единицы (10% = 0,1)
  • N – число лет

В данном примере 1000*(1,10)2 = 1210. Из формулы очевидно (да и из жизни тоже), что сумма вклада через два года зависит от банковской ставки процента. Чем она больше, тем быстрее растет вклад. Если бы ставка банковского процента была другой, например, 12%, то через два года вы бы смогли снять с вклада  примерно 1250 долларов, а если считать более точно 1000*(1,12)2 = 1254.4

Таким способом можно рассчитать величину вашего вклада в любой момент времени в будущем. Расчет будущей стоимости денег в английском языке называется «compounding». Данный термин на русский язык переводят как «наращение» или калькой с английского как «компаундирование». Лично мне больше нравится перевод данного слова как «приращение» или «прирост».

Смысл понятен – с течением времени денежный вклад увеличивается за счет приращения (прироста) ежегодными процентами. На этом, собственно говоря, построена вся банковская система современной (капиталистической) модели мироустройства, в которой время – это деньги.

Теперь давайте посмотрим на данный пример с другого конца. Допустим, вам нужно отдать долг своему приятелю, а именно: через два года заплатить ему $1210.

Вместо этого вы можете отдать ему $1000 сегодня, а ваш приятель положит эту сумму в банк под годовую ставку 10% и через два года снимет с банковского вклада ровно необходимую сумму $1210.

То есть эти два денежных потока: $1000 сегодня и $1210 через два года — эквивалентны друг другу. Не важно, что выберет ваш приятель – это две равноценные возможности.

ПРИМЕР 2. Допустим, через два года вам надо сделать платёж в сумме $1500. Чему эта сумма будет равноценна сегодня?

Чтобы рассчитать сегодняшнюю стоимость, нужно идти от обратного: 1500 долларов разделить на (1,10)2 , что будет равно примерно 1240 долларам. Этот процесс и называется дисконтированием.

Если говорить простым языком, то дисконтирование – это определение сегодняшней стоимости будущей денежной суммы (или если говорить более правильно, будущего денежного потока).

Если вы хотите выяснить, сколько будет стоить сегодня сумма денег, которую вы или получите, или планируете потратить в будущем, то вам надо продисконтировать эту будущую сумму по заданной ставке процента. Эта ставка называется «ставкой дисконтирования».

В последнем примере ставка дисконтирования равна 10%, 1500 долларов – это сумма платежа (денежного оттока) через 2 года, а 1240 долларов – это и есть так называемая дисконтированная стоимость будущего денежного потока.

В английском языке существуют специальные термины для обозначения сегодняшней (дисконтированной) и будущей стоимости: future value (FV) и present value (PV). В примере выше $1500 — это будущая стоимость FV, а $1240 – это текущая стоимость PV.

Когда мы дисконтируем — мы идём от будущего к сегодняшнему дню.

Дисконтирование

Когда мы наращиваем — мы идём от сегодняшнего дня в будущее.

Наращение

Формула для расчета дисконтированной стоимости или формула дисконтирования для данного примера имеет вид: 1500 * 1/(1+R)n = 1240.

Математическая   формула дисконтирования в общем случае будет такая: FV * 1/(1+R)n = PV. Обычно её записывают в таком виде:

PV = FV * 1/(1+R)n

Коэффициент, на который умножается будущая стоимость 1/(1+R)n называется фактором дисконтирования от английского слова factor в значении «коэффициент, множитель».

В данной формуле дисконтирования: R – ставка процента, N – число лет от даты в будущем до текущего момента.

Таким образом:

  • Compounding или Приращение – это, когда вы идете от сегодняшней даты в будущее.
  • Discounting или Дисконтирование – это, когда вы идете из будущего к сегодняшнему дню.

Обе «процедуры» позволяют учесть эффект изменения стоимости денег с течением времени.

Конечно, все эти математические формулы сразу наводят тоску на обычного человека, но главное, запомнить суть. Дисконтирование – это когда вы хотите узнать сегодняшнюю стоимость будущей суммы денег (которую вам надо будет потратить или получить).

Надеюсь, что теперь, услышав фразу «понятие дисконтирования», вы сможете объяснить любому, что подразумевается под этим термином.

Приведенная стоимость – это дисконтированная стоимость?

В предыдущем разделе мы выяснили, что

Дисконтирование– это определение текущей стоимости будущих денежных потоков

Не правда ли, в слове «дисконтирование» слышится слово «дисконт» или по-русски скидка? И действительно, если посмотреть на этимологию слова discount, то уже в 17 веке оно использовалось в значении «deduction for early payment», что означает «скидка за раннюю оплату». Уже тогда много лет назад люди учитывали временную стоимость денег. Таким образом, можно дать еще одно определение: дисконтирование – это расчет скидки за быструю оплату счетов. Эта «скидка» и является мерилом временной стоимости денег или time value of money.

Дисконтированная стоимость – это текущая стоимость будущего денежного потока (т.е. будущий платеж за вычетом «скидки» за быструю оплату). Ее еще называют приведенной стоимостью, от глагола «приводить». Говоря простыми словами, приведенная стоимость – это будущая денежная сумма, приведенная к текущему моменту.

Если быть точным, то дисконтированная и приведенная стоимость – это не абсолютные синонимы. Потому что приводить можно не только будущую стоимость к текущему моменту, но и текущую стоимость к какому-то моменту в будущем.

Например, в самом первом примере можно сказать, что 1000 долларов, приведенные к будущему моменту (через два года) при ставке 10%  равны 1210 долларов.

То есть, я хочу сказать, что приведенная стоимость – это более широкое понятие, чем дисконтированная стоимость.

Кстати, в английском языке такого термина (приведенная стоимость) нет. Это наше, чисто русское изобретение. В английском языке есть термин present value (текущая стоимость) и discounted cash flows (дисконтированные денежные потоки). А у нас есть термин приведенная стоимость, и он чаще всего используется именно в значении «дисконтированная» стоимость.

Таблица дисконтирования

Чуть выше я уже приводила формулу дисконтирования PV = FV * 1/(1+R)n, которую можно описать словами как:

Дисконтированная стоимость равна будущая стоимость, умноженная на некий множитель, который называется фактором дисконтирования.

Коэффициент дисконтирования 1/(1+R)n, как видно из самой формулы, зависит от ставки процента и количества периодов времени.

Чтобы не вычислять его каждый раз по формуле дисконтирования, пользуются таблицей, показывающей значения коэффициента в зависимости от % ставки  и количества периодов времени. Иногда она называется «таблица дисконтирования», хотя это не совсем правильный термин.

Это таблица коэффициентов дисконтирования, которые рассчитываются, как правило, с точностью до четвертого знака после запятой.

Пользоваться данной таблицей коэффициентов дисконтирования очень просто: если вы знаете ставку дисконтирования и число периодов, например, 10% и 5 лет, то на пересечении соответствующих столбцов находится нужный вам коэффициент.

Пример 3. Давайте разберем простой пример. Допустим, вам нужно выбрать между двумя вариантами:

  • А) получить 100,000 долларов сегодня
  • Б) или 150,000 долларов одной суммой ровно через 5 лет

Что выбрать?

Если вы знаете, что банковская ставка по 5-летним депозитам составляет 10%, то вы легко можете посчитать, чему равна сумма 150,000 долларов к получению через 5 лет, приведенная к текущему моменту.

Соответствующий коэффициент дисконтирования в таблице равен 0,6209 (ячейка на пересечении строки 5 лет и столбца 10%). 0,6209 означает, что 62,09 цента, полученные сегодня, равны 1 доллару к получению через 5 лет (при ставке 10%). Простая пропорция:

сегодня

через 5 лет

62,09 цента

$1

X?

150,000

Таким образом, $150,000*0,6209 = 93,135.

93,135 — это дисконтированная (приведенная) стоимость суммы $150,000 к получению через 5 лет.

Она меньше, чем 100,000 долларов сегодня. В данном случае, синица в руках действительно лучше, чем журавль в небе. Если мы возьмем 100,000 долларов сегодня, положим их на депозит в банке по 10% годовых, то через 5 лет мы получим: 100,000*1,10*1,10*1,10*1,10*1,10 = 100,000*(1,10)5  = 161,050 долларов. Это более выгодный вариант.

Чтобы упростить это вычисление (вычисление будущей стоимости при заданной сегодняшней стоимости), можно также воспользоваться таблицей коэффициентов.

По аналогии с таблицей дисконтирования эту таблицу можно назвать таблицей коэффициентов приращения (наращения).

Вы можете построить такую таблицу самостоятельно в Excele, если используете формулу для расчета коэффициента приращения:(1+R)n .

Из этой таблицы видно, что 1 доллар сегодня при ставке 10% через 5 лет будет стоить 1,6105 долларов.

С помощью такой таблицы легко будет посчитать, сколько денег нужно положить в банк сегодня, если вы хотите получить определенную сумму в будущем (не пополняя вклад).

Чуть более сложная  ситуация возникает, когда вы хотите не только положить деньги на депозит сегодня, но и собираетесь каждый год добавлять определенную сумму к своему вкладу.

Как это рассчитать, читайте в следующей статье. Она называется формула аннуитета.

Философское отступление для тех, кто дочитал до этого места

Дисконтирование базируется на знаменитом постулате «время — деньги». Если задуматься, то эта иллюстрация имеет очень глубокий смысл. Посадите яблоню сегодня, и через несколько лет ваша яблоня вырастет, и вы будете собирать яблоки в течение многих лет. А если сегодня вы не посадите яблоню, то в будущем яблок вы так и не попробуете.

Всё, что нам нужно – это решиться: посадить дерево, начать свое дело, стать на путь, ведущий к исполнению мечты. Чем раньше мы начнем действовать, тем больший урожай мы получим в конце пути. Нужно превращать время, отпущенное нам в нашей жизни, в результаты.

«Семена цветов, которые распустятся завтра, сажают сегодня». Так говорят китайцы.

Если вы мечтаете о чем-то, не слушайте тех, кто вас отговаривает или подвергает сомнению ваш будущий успех. Не ждите удачного стечения обстоятельств, начинайте как можно раньше. Превращайте время вашей жизни в результаты.

Большая таблица коэффициентов дисконтирования (открывается в новом окне):

Вы можете прочитать другие статьи по теме Финансы:

1. Капитализация вклада — что это? Формула капитализации процентов: ежемесячно, ежедневно, непрерывно.

Рассчитать свой потенциальный доход по вкладу можно самостоятельно, не полагаясь на калькуляторы дохода, которые размещены на сайтах банковских учреждений.

В этой статье на конкретных примерах показано, как рассчитать доход по вкладу с капитализацией процентов (ежеквартальной, ежемесячной) и как рассчитать эффективную ставку по вкладам с капитализацией.

2. Формула аннуитета. Вечная рента. Это надо знать каждому! (не для банкиров)
Вечная рента — это серия одинаковых платежей, которые продолжаются вечно.

Такой вариант возможен, если, например, у вас есть вклад в банке, вы снимаете только ежегодные проценты, а основная сумма вклада остается нетронутой.

Тогда, если ставка процента по вкладу не меняется, у вас будет так называемая вечная рента.

3. Формула расчета NPV инвестиционного проекта. Это просто.

Инвестировать — это значит вложить свободные финансовые ресурсы сегодня с целью получения стабильных денежных потоков в будущем. Как не ошибиться и не только вернуть вложенные средства, но еще и получить прибыль от инвестиций?

4. Внутренняя норма доходности. Формула расчета IRR инвестиционного проекта

В данной статье приведены не только формула и определение IRR, но есть примеры расчетов этого показателя (в Excel, графический) и интерпретации полученных результатов. Два примера из жизни, с которыми сталкивается каждый человек

5. Ставка дисконтирования для инвестиционного проекта. Это WACC — средневзвешенная стоимость капитала.

По своей сути ставка дисконтирования при анализе инвестиционных проектов — это ставка процента, по которой инвестор привлекает финансирование. Как ее рассчитать?

Самые интересные статьи по теме МСФО и Дипифр:

1. Консолидация — это контроль. МСФО IFRS 10 — это единая концепция контроля для любых объединений  бизнеса

2. Как сдать экзамен Дипифр со второго раза?

 Перейти на главную страницу

Источник: http://msfo-dipifr.ru/ponjatie-formula-tablitca-diskontirovanija/

О бизнесе
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: